Herbst und Winter nach besonders schwacher bzw. starker Sonnenaktivität

Hallo,

in Erweiterung meines Beitrags „Solarer Einfluss auf Winterkälte in Mitteleuropa“ möchte ich jetzt der Frage nachgehen, ob es nennenswerte Unterschiede in der Zirkulation der NH bei einem Vergleich der Jahre mit schwacher bzw. starker Sonnenaktivität gibt. Ich verwende die Extremjahre, weil die Unterschiede, wenn es sie gibt, hier am deutlichsten in Erscheinung treten müssten.

Ich definiere „extrem schwache Sonnenaktivität“ mit solar – flux – Einheiten <700 im 3-Monatsdurchschnitt Juni – August (dazu gehört dann auch das Jahr 2019 mit 674 Einheiten und wird den 2. Platz, also den 2.niedrigsten Wert, seit 1948 einnehmen).

1. Platz (jeweils Durchschnitt Juni – August in solar – flux – Einheiten): 2008: 660

2. Platz: 2009: 681

3. Platz: 1954: 683

4. Platz: 1964: 684

5. Platz: 1986: 687

„Extrem starke Sonnenaktivität“ definiere ich mit solar – flux – Einheiten >2000 im 3-Monatsdurchschnitt Juni – August:

1. Platz: 1958: 2272

2. Platz: 1957: 2241

3. Platz: 1959: 2182

4. Platz: 1989: 2129

5. Platz: 1991: 2097

Ich vergleiche nun zunächst die Herbste und versuche einen „solaren Fingerabdruck“ zu erhalten. Ich vergleiche die Temperaturen der betreffenden Herbste in Deutschland mit den 5 davor und 5 danach liegenden Herbsten und berechne die Temperaturabweichung zu diesem jeweiligen Mittelwert.

1954: +0,4

1964: -0,5

1986: -0,1

2008: -0,6

2009: +0,5

Der Durchschnitt der Abweichungen beträgt -0,1 K.

1957: -0,2

1958: +0,4

1959: -0,5

1989: +0,6

1991: +0,3

Der Durchschnitt der Abweichungen beträgt +0,1 K.

Vergleicht man beide Gruppen mit dem Durchschnitt von 1951 – 2010, dann erreicht die 1. Gruppe eine Abweichung von +0,2 K und die 2. Gruppe von 0,0 K. Es gibt also für den Herbst insgesamt keine nennenswerte Unterschiede, es könnte aber zwischen den Herbstmonaten Unterschiede geben, die sich dann wieder aufheben.

Zum Winter, gleiches Vorgehen:

1954/55: -0,4

1964/65: +0,5

1986/87: -2,2

2008/09: -1,4

2009/10: -2,6

Die durchschnittliche Abweichung beträgt -1,2 K.

1957/58: +1,1

1958/59: +1,2

1959/60: +1,2

1989/90: +2,8

1991/92: +0,4

Die durchschnittliche Abweichung beträgt +1,3 K.  Der Temperaturunterschied zwischen beiden Gruppen beträgt also für den Winter 2,5 K. Das ist sehr viel.

Bezieht man beide Gruppen auf den Durchschnitt 1951 – 2010, so waren alle 5 Winter der 1. Gruppe zu kalt (um 1,2 K) und alle 5 Winter der 2. Gruppe zu mild (um 0,9 K), Differenz in diesem Falle 2,1 K.

Die Monate im Einzelnen (Subtraktion der Werte der 2. Gruppe von den Werten der 1. Gruppe, auf diese Weise zeigen sich die Unterschiede, sichtbar ist das Ergebnis, positive Zahlen bedeuten also, die 1. Gruppe hat die höheren Werte, negative Zahlen bedeuten, die 1. Gruppe hat die tieferen Werte).

Ich werde demnächst noch einen Beitrag schreiben, in welchem ich dann die Jahre mit extrem geringer Sonnenaktivität mit dem Durchschnitt (1981 – 2010) vergleiche.

September:

Bodendruck:

ejZtBL6Aml

Geopotential 500hPa:

bP48aEIWBy

Temperatur:

cqLy2gp6uw

Die Septembermonate bei schwacher Sonnenaktivität sind in Westeuropa etwas kälter als bei starker. Östlich von Nowaja Semlja sind sie dagegen wärmer. Bei Septembern der 1. Gruppe ist die Tiefdrucktätigkeit über dem Nordmeer und Skandinavien stärker (Bodendruck und Geopot).

Oktober:

Bodendruck:

7RMP0k_vwL

Geopotential 500hPa:

5lM6AzkGno

Temperatur:

BZ_TaZIkwm

In Oktobern mit schwacher Sonnenaktivität ist die Tiefdrucktätigkeit über dem Nordmeer stärker, Grönland hat tiefere Temperaturen und die Küste Nordsibiriens höhere.

November:

Bodendruck:

nRGWDlHcC_

Geopotential 500hPa:

IUn9rLJE_w

Temperatur:

UWPKCWyP6I

Bei schwacher Sonnenaktivität ist Grönland kälter, der Bereich Spitzbergen – Nordküste Sibiriens wärmer. Die Tiefrucktätigkeit über dem Nordmeer und Skandinavien ist höher.

Ein Blick auf die (untere) Stratosphäre, 100hPa – Ebene:

Temperatur:

HYf1_kv8oX

Bei schwacher Sonnenaktivität über Nordamerika sowie Ost  – und Südasien kälter, ziemlich unstrukturiert.

Dezember:

Bodendruck:

8p1iftEWQ1

Geopotential 500hPa:

OQkkrDGqhr

Temperatur:

beBCWR7hew

In Dezembern mit schwacher Sonnenaktivität ist es über dem Westen Nordamerikas und Zentralasiens kälter und im Bereich zwischen Ostgrönland und Nowaja Semlja wärmer,  Luftdruck und Geopotential über dem Atlantik und Westrussland sind höher, Geopot über Mitteleuropa tiefer, Temperatur nur über Süddeutschland und den Alpen tiefer, spricht für NW – Lagen, Höhenkälte, maritimer Einfluss.

Was tut sich in der Stratosphäre?

bDEWV1obYb

Über Ostsibirien ist es nun auf der 100hPa – Ebene deutlich wärmer (als in Jahren mit starker Sonnenaktivität), „Stratosphärenerwärmung“ deutet sich an.

Januar:

Bodendruck:

x9aszthMNc

Geopotential 500hPa:

NRuSbT6xMk

Temperatur:

eq_m3zdHUs

In Januaren mit schwacher Sonnenaktivität ist es in Europa kälter, ebenso im Osten der USA, wärmer ist es bei Nowaja Semlja, etwas wärmer auch in Südgrönland.

Die Stratosphäre:

F0SQmPJgiI

In Januaren mit schwacher Sonnenaktivität ist die Temperatur der Stratosphäre über Grönland und der Davisstraße deutlich höher, dies geht einher mit tiefen Bodentemperaturen in Europa.

Februar:

Bodendruck:

vTFKZNPoRq

Geopotential 500hpa:

XKnFMVlpz7

Temperatur:

iiL3enbzID

Die Unterschiede sind jetzt im Februar am größten, Luftdruckdifferenz an den Schaltstellen Island, Mittelmeer, Eismeer nahezu 15hPa, Temperatur entsprechend „Hot Spot“ Davisstraße, kälteres Europa, Nordasien (in Februaren mit schwacher Sonnenaktivität).

Stratosphäre:

uLKT8LmVlu

Auch in der Stratosphäre gibt es jetzt die größten Unterschiede, 10 K Differenz bei Spitzbergen, also wärmer in Februaren mit schwacher Sonnenaktivität.

März:

Bodendruck:

uNp5PuVlZk

Geopotential 500hpa:

Cwy21FpyaK

Temperatur:

uRe0GFumPj

Der März gehört zwar nicht mehr zum (meteorologischen) Winter, aber wie zu sehen ist, setzt sich die Februarsituation im Wesentlichen fort, erneut „Hot Spot“ Davisstraße.

Stratosphäre:

aqPmhTaH_1

Dies gilt in abgeschwächter Weise auch für die Stratosphäre, während im April dann die „Stratosphärenerwärmung“ verschwunden ist, wie man hier sieht (bzw. Reste über Ostsibirien zu erkennen sind, wo sie im Dezember ihren Anfang nahm):

6_O_1gut2e

Es zeigt sich also, dass über die Stratosphärenerwärmung im Winter, die bei (sehr) schwacher Sonnenaktivität auftritt, ein Zirkulationsmuster generiert wird, welches in Europa zu kälteren Temperaturen führt – im Winter, für den Herbst konnte kein gravierender Einfluss festgestellt werden.

Man könnte jetzt auch noch die QBO ins Spiel bringen, Frau Prof. Labitzke hat in diesem Bereich geforscht. In Studien schrieb sie, dass „Stratosphärenerwärmung“ vorzugsweise stattfindet bei QBO – Ost im 30hPa – Niveau und geringer Sonnenaktivität sowie bei QBO – West und starker Sonnenaktivität.

Von den 5 genannten Wintern bei sehr schwacher Sonnenaktivität waren 4 im 30hPa – Niveau in der Ostphase und einer, nämlich 2008/09 in der Westphase (im August 2019 befindet sich die QBO im 30hPa – Niveau noch in der Westphase, im 10hPa – Niveau ist sie schon in der Ostphase, sie wird zum Dezember vermutlich auch im 30hPa – Niveau in der Ostphase sein).

Ausgerechnet der Winter mit den niedrigsten solar flux Werten hatte dann trotz QBO – Westphase eine anhaltende Stratosphärenerwärmung. Man kann dies eigentlich nur so interpretieren, dass eine QBO – Ostphase bei geringer Sonnenaktivität eine Stratosphärenerwärmung begünstigt, dass aber bei extrem geringer Sonnenaktivität der QBO -West Einfluss überlagert wird.

Von den 5 genannten Wintern bei sehr starker Sonnenaktivität befanden sich 3 in der QBO Ostphase und 2 in der QBO Westphase. Auch in diesen Fällen, also hier bei Westphase, hat der solare Einfluss die QBO anscheinend überlagert und zu milden Wintern in (Mittel-) Europa geführt.

Gruß

KHB